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Turbulent flows are highly intermittent—for example, they ex-
hibit intense bursts of vorticity and strain. Kolmogorov theory1,2

describes such behaviour in the form of energy cascades from
large to small spatial and temporal scales, where energy is
dissipated as heat. But the causes of high intermittency in
turbulence, which show non-gaussian statistics3–5, are not well
understood. Such intermittency can be important, for example,
for enhancing the mixing of chemicals6,7, by producing sharp

drops in local pressure that can induce cavitation (damaging
mechanical components and biological organisms)8, and by
causing intense vortices in atmospheric flows. Here we present
observations of the three components of velocity and all nine
velocity gradients within a small volume, which allow us to
determine simultaneously the dissipation (a measure of strain)
and enstrophy (a measure of rotational energy) of a turbulent
flow. Combining the statistics of all measurements and the
evolution of individual bursts, we find that a typical sequence
for intense events begins with rapid strain growth, followed by
rising vorticity and a final sudden decline in stretching. We
suggest twomechanisms which can produce these characteristics,
depending whether they are due to the advection of coherent
structures through our observed volume or caused locally.

The problem of turbulence has been notoriously difficult to
resolve, because it involves the interaction of flow length and
timescales over many orders of magnitude. The intense, localized
events that are characteristic of turbulence can cause difficulty in
numerical simulations, via the generation of small scales and large
local gradients. Simulations have some advantage in that they
provide access to the entire field; alternatively, experiments can
yield long observational records that are computationally imprac-
tical. Turbulence experiments also have limitations. Many measure-
ments have relied on invasive techniques9 that can affect the flow
being studied. Usually, measurements do not capture the full three-
dimensional nature of the flow; instead, they rely on one- or two-
component approximations of velocities and velocity gradients. A
fully three-dimensional (3D), spatially resolved technique is needed
to measure important quantities such as the energy dissipation and
helicity within the flow. Good temporal resolution is also required
to study the rapid development of intense events.

A few recent experiments have captured many of these features.
Tao et al.10,11 used holographic particle image velocimetry (HPIV) to
take elegant 3D snapshots of turbulent channel flow, though the
technique is not time-resolved. Using two very different technol-
ogies, La Porta et al.12 and Mordant et al.13 tracked individual
particles (a lagrangianmeasurement) in highly turbulent flows. This
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Figure 1 Time traces of the dissipation 1 and enstrophy Q. The two traces above show

intense events occurring in a turbulent flow. Dissipation curves are marked with crosses,

and enstrophy curves are shown as continuous curves. The time averages are

1̄¼ 0.0336 cm2 s23 and !Q¼ 4:13s22 with intermittent bursts reaching up to 40 times

those values.
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Turbulent flows are highly intermittent—for example, they ex-
hibit intense bursts of vorticity and strain. Kolmogorov theory1,2

describes such behaviour in the form of energy cascades from
large to small spatial and temporal scales, where energy is
dissipated as heat. But the causes of high intermittency in
turbulence, which show non-gaussian statistics3–5, are not well
understood. Such intermittency can be important, for example,
for enhancing the mixing of chemicals6,7, by producing sharp

drops in local pressure that can induce cavitation (damaging
mechanical components and biological organisms)8, and by
causing intense vortices in atmospheric flows. Here we present
observations of the three components of velocity and all nine
velocity gradients within a small volume, which allow us to
determine simultaneously the dissipation (a measure of strain)
and enstrophy (a measure of rotational energy) of a turbulent
flow. Combining the statistics of all measurements and the
evolution of individual bursts, we find that a typical sequence
for intense events begins with rapid strain growth, followed by
rising vorticity and a final sudden decline in stretching. We
suggest twomechanisms which can produce these characteristics,
depending whether they are due to the advection of coherent
structures through our observed volume or caused locally.

The problem of turbulence has been notoriously difficult to
resolve, because it involves the interaction of flow length and
timescales over many orders of magnitude. The intense, localized
events that are characteristic of turbulence can cause difficulty in
numerical simulations, via the generation of small scales and large
local gradients. Simulations have some advantage in that they
provide access to the entire field; alternatively, experiments can
yield long observational records that are computationally imprac-
tical. Turbulence experiments also have limitations. Many measure-
ments have relied on invasive techniques9 that can affect the flow
being studied. Usually, measurements do not capture the full three-
dimensional nature of the flow; instead, they rely on one- or two-
component approximations of velocities and velocity gradients. A
fully three-dimensional (3D), spatially resolved technique is needed
to measure important quantities such as the energy dissipation and
helicity within the flow. Good temporal resolution is also required
to study the rapid development of intense events.

A few recent experiments have captured many of these features.
Tao et al.10,11 used holographic particle image velocimetry (HPIV) to
take elegant 3D snapshots of turbulent channel flow, though the
technique is not time-resolved. Using two very different technol-
ogies, La Porta et al.12 and Mordant et al.13 tracked individual
particles (a lagrangianmeasurement) in highly turbulent flows. This
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Extreme vorticity growth in 
Navier-Stokes solutions         

Limits on Enstrophy Growth for Solutions of
the Three-dimensional Navier-Stokes Equations
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ABSTRACT. The enstrophy, the square of the L2 norm of the
vorticity field, is a key quantity for the determination of regular-
ity and uniqueness properties for solutions to the Navier-Stokes
equations. In this paper we investigate the maximal enstrophy
generation rate for velocity fields with a fixed amount of enstro-
phy, as a function of the magnitude of the enstrophy via numer-
ical solution of the Euler-Lagrange equations for the associated
variational problem. The veracity of the novel computational
scheme is established by utilizing the exactly soluble version of
the problem for Burgers’ equation as a benchmark. The results
for the three dimensional Navier-Stokes equations are found to
saturate functional estimates for the maximal enstrophy produc-
tion rate as a function of enstrophy.

1. INTRODUCTION

The motion of incompressible Newtonian fluids is governed by the Navier-Stokes
equations. In the simple mathematical setting considered here, they constitute the
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Navier-Stokes equations: 

•   Periodic box: 

•   Initial condition: 

Open ($1M) question:     
 Does a unique smooth solution exist for all t > 0?!
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Some definitions & some things we know: 

•   Kinetic energy: 

•   Vorticity: 

•   Enstrophy: 

•  If solution is smooth enough, dK/dt = –νE.  
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Global (in time) weak solutions exist: 

•   If K0<∞, there are weak solutions with finite energy, 

•   … and with finite integrated enstrophy, 

•   … but only known to satisfy an energy inequality, 

•   … and there is no assurance that they are unique.   

€ 

K(t) ≤ K0     ∀t ≥ 0
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E(t)dt <  ∞    

ta

tb
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Local (in time) strong solutions exist: 

•   For (8π2/L2 )K0 ≤ E0 < ∞, 

 

•   Fact: 

•   And strong solutions are unique.   
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∃ T K0,E0,ν( ) > 0 ∍  E(t) <∞  for  0 ≤ t < T.
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E(t) <∞  for  ta ≤ t ≤ tb


 u (⋅,t)∈ C∞([0,L]3) for ta < t ≤ tb .



As long as the enstrophy is finite …   
or for Galerkin-regularized solutions 

"   ⇑ 
Enstrophy generation rate G{u} = production – dissipation 
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Vortex stretching & enstrophy production: 

Vorticity can be amplified; enstrophy can be produced.

 Does this nonlinear process get out of control? 



System of differential (in)equations: 
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... as long as RHS ≥  0.
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Enstrophy decreases if E0K0 ≤ ν4/2c. 
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Global existence and uniqueness if E0K0 ≤ 3ν4/2c. 
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But does not prevent finite-time singularity if E0K0 > 3ν4/2c. 
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But does not prevent finite-time singularity if E0K0 ≥ 3ν4/2c. 



Question: 

 How big can G{u} really get in terms of K and E?  

•  Analytic estimates don�t account for div u = 0 … 

•  or total competition between production & dissipation. 

•  Would like to solve the variational problem for max rate: 
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Settle for slightly less: 

•   We know that ℜ ≤ cE3/ν3 … but that ≠ $1M.  

•   �Critical� behavior is ℜ ~ E2 as E → ∞. 

•   Solve the Euler-Lagrange equations: 

Solve computationally … via gradient ascent method. 
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Starting from exact solution as E → 0 …  

•  Large E behavior is ℜ ~ E 1.78 (= 7/4?) … subcritial! 



What do the maximizers look like? 

periodic array of �vortex stretchers� 



But this is a non-convex variational problem 

•  Euler-Lagrange solutions are local extrema … 
•  So must see if there are other, global, maxima. 



… another branch emerges at high E: 

•  Large E behavior is ℜ ~ E 2.997 (= 3?) … as estimated. 



What do these maximizers look like? 

colliding vortex rings 



Another view … 

Vorticity in a plane slice 



Reality check: 
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For velocity fields with cylindrical symmetry … 
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Remarks & laments: 

•  Remark #1:   The analytic asymptotic high-E estimate 

ℜ(E) ≤ cE3/ν3 can be saturated by divergence-free fields. 

•  Lament #1: no $1M to be found down this road! 

 

•  Remark #2: This �most dangerous� velocity field will not 

produce a singularity in N-S. 

•  Lament #2: no $1M to be found down that road! 

 

•  Remark #3: K ~ 1/E for the optimizer, so we�re not sure if 

knowing the full upper limit M(K,E) will help … 

•  Lament #3:  so $1M not clearly down that road, either! 



Maybe Lu will find $1M in Manhattan … 



Just for fun … what do colliding vortex rings do? 
 

(from website of Dr. T.B. Nickels <http://www2.eng.cam.ac.uk/~tbn22/Mov.html>) 
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According to statistical turbulence theory, the ensemble averaged squared vorticity ρE is expected to
grow not faster than dρE/dt ∼ ρ3/2

E . Solving a variational problem for maximal bulk enstrophy (E)
growth, velocity fields were found for which the growth rate is as large as dE/dt ∼ E3. Using numerical
simulations with well resolved small scales and a quasi-Lagrangian advection to track fluid subvolumes
with rapidly growing vorticity, we study spatially resolved statistics of vorticity growth. We find that the
volume ensemble averaged growth bound is satisfied locally to a remarkable degree of accuracy. Elements
with dE/dt ∼ E3 can also be identified, but their growth tends to be replaced by the ensemble-averaged
law when the intensities become too large.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fluid turbulence may be characterized as a tangle of inter-
mittent vortices embedded in regions of straining motion [1,2].
Theoretical and computational studies of the evolution of isolated
intense vortices [3,4], pairs of vortices [5–8], highly-symmetric vor-
tex tangles or ensembles of randomly distributed vortices [9,10]
have contributed considerably to our understanding of the statisti-
cal properties of homogeneous isotropic Navier–Stokes turbulence,
but numerical computation of high-vorticity events in a turbu-
lent flow remains elusive because of the high demands on spa-
tial and temporal resolution. The properties of such events, their
frequency and maximal intensities, are important for small scale
mixing, the efficiency of combustion processes, and for modeling
turbulence. The situation for the inviscid Euler equation is not
much different. Recently, Bustamente and Kerr [11] discussed in
detail the sensitivity of vorticity growth on grid resolution and de-
aliasing techniques for interacting highly-symmetric anti-parallel
vortices. They came to different conclusions from Hou and Li [12]
who observed a depletion of the vortex stretching in their Fourier
smoothing method. The question of finite-time blow-up in solu-
tions of the Euler equations remains an open area of investiga-
tion.

For viscous fluids there is a bound on the relation between the
growth rate of the volume integrated squared vorticity E , namely
dE/dt ! aE3 with known prefactor a, and there is also a calcula-

* Corresponding author.
E-mail address: Joerg.Schumacher@tu-ilmenau.de (J. Schumacher).

tion of optimal fields for which dE/dt ∼ E3. On the other hand, the
ensemble averaged squared vorticity ρE is not expected to grow
faster than dρE/dt ∼ ρ3/2

E . In an effort to understand the relation
between these two results and how they translate to turbulence,
we conducted high-resolution direct numerical simulations with a
special focus on the dynamics on small scales and the evolution of
strong vorticity amplification elements. This is the objective of the
present work.

The strong temporal variations near “almost singular” events in
turbulence can only be resolved with a sufficiently small time step,
which together with a high spatial resolution requires the storage
of huge data files. We use a cubic box with periodic boundaries in
all directions and solve the Navier–Stokes equations numerically,

∂u
∂t

+ (u · ∇)u = −∇p + ν$u + f , (1)

∇ · u = 0, (2)

where f is a large-scaling forcing. We apply the pseudospectral
method with 2/3 de-aliasing and obtain a homogeneous isotropic
and statistically stationary three-dimensional flow at a Taylor mi-
croscale Reynolds number of Rλ = 107 [13]. The grid size is 20483,
so that when expressed in terms of the Kolmogorov length ηK =
ν3/4/⟨ϵ⟩1/4 (with the mean energy dissipation rate ⟨ϵ⟩) the sides
of the box are 683ηK long and there are 3 grid points per ηK . Since
the crossover from viscous to inertial range occurs near a scale of
8ηK , we can resolve singular events into the viscous range. The
time step $t = 0.003τη , where τη = √

ν/⟨ϵ⟩ is the Kolmogorov
time, is well within the limits discussed by Donzis and Sreeni-
vasan [14]. The events we would like to study are followed for
a time interval of about 55τη units or 1830 output steps. This

0375-9601/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.11.078
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would add up to about 5 × 1013 velocity field values that have
to be stored. In order to avoid this, we turn to the so-called quasi-
Lagrangian method [15] which eliminates the large scale sweeping
motion superimposed on the localized singular events we want
to study. Specifically, we follow 100 Cartesian cubes V L simulta-
neously through different regions of the evolving Navier–Stokes
flow. The motion of the subvolumes V L is fixed by the advec-
tion of a Lagrangian tracer in their center, and their sides are kept
aligned with the outer coordinates. The boxes have a side length of
L = 17ηK , corresponding to 513 grid points. This reduces the num-
ber of velocity field values that have to be stored to 1.4 × 10−3 of
the original estimate.

2. Analytic predictions on the growth rate of enstrophy

The vorticity is the curl of the velocity field, ω = ∇× u, and the
enstrophy is the volume integral of its intensity,

E(t) =
∫

V

ω2 dV . (3)

It follows from the Navier–Stokes equation that in any incom-
pressible Newtonian fluid the growth rate of the enstrophy, dE/dt ,
obeys,

dE(t)
dt

= 2
∫

V

(ω · ∇u) · ω dV − 2ν

∫

V

(∇ω)2 dV . (4)

From this it can be shown that E(t) cannot grow faster than

dE(t)
dt

! 27c3

16ν3 E(t)3, (5)

with ν the kinematic viscosity of the fluid and c = √
2/π (for de-

tails see [16,17]). This holds for the volume integrated quantity
and does not make any assumptions on the flow. Incompress-
ible flow fields that maximize the enstrophy production, and thus
the growth rate of enstrophy, were recently found by solving an
optimization problem [16,17]. At high Reynolds number the max-
imum enstrophy growth rate (5) is realized by colliding, axially
symmetric vortex rings. At lower Reynolds numbers, maximum en-
strophy generation is realized by interacting Burgers vortices with
dE/dt ∼ E7/4.

There is a second analytical result that pertains to the growth
rate of the ensemble averaged squared vorticity (or enstrophy den-
sity)

ρE =
〈
ω2〉 (6)

for the particular case of homogeneous and isotropic (box) tur-
bulence. A direct consequence of the von Kármán–Howarth (KH)
equation [18] for the velocity correlations, when the volume aver-
age ⟨·⟩ in (7) agrees with the ensemble average that appears in the
KH equation, is derived in [19,20] and states that

d
dt

ρE = − 7S

3
√

15
ρ3/2

E − 70ν
〈(
∂2

x ux
)2〉

, (7)

where S is the skewness of the longitudinal velocity derivative,
and ux is the x-component of the turbulent velocity field. It is an
empirical fact that S < 0. It has been observed that the skewness S
is basically constant for Taylor microscale Reynolds numbers Rλ "
200 and it grows weakly as |S| ∼ R0.11

λ for Rλ > 200 [21,22]. Thus
we will assume for purposes of discussion and data analysis that
dρE/dt ∼ ρ3/2

E holds approximately. This exponent is much smaller
than the one in the upper bound (5).

In order to make the relation between the two relations more
explicit, we rewrite the first one assuming that E = L3ρE = L3⟨ω2⟩

Fig. 1. (Color online.) Vortex tubes and dissipation sheets in homogeneous isotropic
turbulence. Isosurfaces of the vorticity magnitude square (or local enstrophy) Ω =
ω2 (cyan) and the energy dissipation rate ϵ = 2νSij Si j (red) with Sij = (∂ui/∂x j +
∂u j/∂xi)/2 the rate of strain tensor. Both surfaces are shown at the level of ten
times their mean. The displayed volume is 1/16 of the full simulation box.

for a box of length L and ⟨ϵ⟩ = νρE to bring in the Kolmogorov
length. Then the bound suggests that

d
dt

ρE ! 27c3

16

(
L

ηK

)6

ρ3/2
E . (8)

The key difference then is a ratio of lengths: if the sidelength L
of the volume V is of the order of the Kolmogorov scale, both
results imply the same exponent, despite the different boundary
conditions and derivations. But if the volume is larger than ηK ,
a stronger variation is possible: in a situation where the vorticity
content of the volume is below the mean that enters the defini-
tion of the Kolmogorov length, the local dissipation length is larger
than the statistical average, and a built up of enstrophy will reduce
the local value, thereby increasing the contribution from the factor
(L/ηK ).

3. Results

3.1. Local quasi-Lagrangian analysis

Configurations as highly symmetric as the colliding vortex rings
that realize the maximum instantaneous enstrophy generation can-
not be generically expected in a turbulent flow. In particular,
the high-amplitude vorticity events in turbulence arise preferen-
tially in the form of tubes [1,2,23] which are rapidly stretched
and deformed by background and self-induced straining motions
[24,25]. Strong strain (or shear) results in high-amplitude energy
dissipation rates. The spatial distribution of high-amplitude events
of the local enstrophy and energy dissipation rate, illustrated in
Fig. 1, underlines this behavior. Isosurfaces of the local enstrophy,
Ω(x, t) = ω2(x, t) (Fig. 1, cyan) at ten times the mean value show
primarily elongated structures. The isosurfaces of energy dissipa-
tion rate, ϵ(x, t) = (ν/2)(∂ui/∂x j + ∂u j/∂xi)

2 (Fig. 1, red) also at
ten times the mean value, reveal sheet-like structures between
the high-vorticity events. This illustrates that while the ensem-
ble averaged values of energy dissipation and vorticity are related
by ⟨ϵ⟩ = νρE this does not apply to their instantaneous and local
values. It does show, however, that extreme events occur at neigh-
boring locations.

To capture this quantitively, we study the probability density
functions (pdf’s) of local energy dissipation and vorticity in Fig. 2.
The pdf’s of ϵ(x, t) and Ω(x, t) show stretched exponential tails
indicative of strong small-scale intermittency (see Fig. 2(a)). The
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Fig. 2. (Color online.) Statistics of local enstrophy and energy dissipation rate.
(a) Probability density functions of local enstrophy, Ω , and energy dissipation rate,
ϵ , given in units of their means, respectively. The vertical arrows mark the global
maxima of Ω and ϵ , respectively, in case of three Lagrangian tracers, No. 14, 33
and 45. (b) Joint probability density function of local enstrophy and energy dis-
sipation rate. The distribution is normalized by both single quantity distributions,
p(z1, z2)/[p(z1)p(z2)], in order to highlight the statistical correlations between
z1 = ϵ/⟨ϵ⟩ and z2 = Ω/ρE . Color coding is in decadic logarithm.

tail is more extended for Ω than for ϵ , in agreement with the ob-
servations in [26]. Fat tails imply that large amplitude events are
significantly more probable than for a Gaussian distributed signal
with the same second moment. In Fig. 2(a) we also mark the global
maxima in ϵ and Ω identified within the advected volumes V L for
three particular Lagrangian trajectories. The locations far out in the
tails document that our quasi-Lagrangian tracking is able to detect
high-amplitude events and that extreme events in both quantities
are spatially correlated and located within our advected volume.
The local correlation between high-amplitude local enstrophy and
energy dissipation events is further supported by the joint pdf in
Fig. 2(b), where p(ϵ/⟨ϵ⟩,Ω/ρE )/[p(ϵ/⟨ϵ⟩)p(Ω/ρE )] is shown. The
maximum values appear in the upper right of the support where
the largest amplitudes for both are present. High-amplitude fluc-
tuations in energy dissipation and local enstrophy density are thus
strongly statistically correlated and found very close together, in
both, space and time.

We now turn to the study of the time evolution of extreme
events within our subvolumes. Fig. 3(a) shows time traces of the
local enstrophy

EL(t) =
∫

V L

ω2 dV . (9)

Since we are interested in the relation between large values of
dEL/dt with EL , we show in Fig. 3b the same data as a scatter
plot in the plane spanned by EL and dEL/dt on a double loga-
rithmic scale. The collection of the individual growth histories in
the subvolumes (which can vary strongly from one to another) is
bounded from above by the scaling dE L/dt ! E3/2

L , indicated there
by the dashed line. This shows that the local growth rate and en-
strophy are related very much as are the volume averages, Eq. (4),
so that the effects of sweeping are averaged out. It suggest that
the estimate

Fig. 3. (Color online.) Quasi-Lagrangian analysis of enstrophy. (a) Time series of EL(t)
for all 100 subvolumes V L are plotted. The time traces that reach the largest local
maxima for EL are colored differently and their labels are indicated in the leg-
end. Enstrophy is given in units of ν2/L with L = 16ηK . (b) Enstrophy growth
rate versus enstrophy. The enstrophy growth rate, dEL/dt , is given in units of
ν3/L3. The a priori upper bound dEL/dt = 27

√
2/(8ν3

√
π3)E3

L is indicated as a
red line. The growth that follows from the von Kármán–Howarth equation [18],
dEL/dt ≈ −7S/3

√
15E3/2

L with a derivative skewness of S = −0.5, is indicated as a
solid blue line. The dashed blue line has the same slope and serves as a guide to
the eye. Color coding is as in panel (a).

dEL

dt
∼

∫

V L

(ω · ∇u) · ω dV ∼
〈
ω2〉3/2

V L ∼
√

E3
L/V L (10)

also holds locally. We have also verified this scaling in a volume
V L/8, i.e. in a cube with half the sidelength. The striking observa-
tion is that the envelope of the local enstrophy growth follows the
scaling of (7). However, we wish to stress that (generically) there
are nonvanishing enstrophy fluxes,

∫
∂V L

ω2u · dA ≠ 0, across the
bounds of V L . Therefore (10) is only a heuristic estimate.

3.2. Local analysis of extreme events

The previous analysis shows that when the average volume has
a diameter of about the Kolmogorov length or above, the bulk es-
timate for the enstrophy growth is recovered. Stronger growths,
therefore, may only occur on smaller scales. To probe for this, we
turn to the study of the time evolution of local extrema within the
cell. We select the grid point x∗ with the fastest local growth rate
within the subvolume, dΩ/dt|max = maxx∈V L (t)[dΩ/dt]. As an in-
dication of the numerical uncertainty, we also show the 26 growth
rates for points on a 33 cube surrounding x∗ . Figs. 4(a) and (b)
demonstrate that the maximum position always gives the outer
envelope of the curve. The curve is continuous by construction,
but its slope is discontinuous when the position x∗ of the point
of maximal growth rate jumps discontinuously within the cell.
Panel (a) shows also that long periods of low variability and small
growth rates are interrupted by short violent outbursts of the local
enstrophy growth rate. The two subsequent intervals I and II for
tracer No. 45 mark exactly such a rapid growth event.

Fig. 4(b) shows the same data as (a) in the plane spanned by
the local enstrophy and its growth rate, dΩ/dt and Ω . The first
part follows a scaling that resembles the global enstrophy growth
bound, dΩ/dt ∼ Ω3. It is connected with a rapid stretching by two
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would add up to about 5 × 1013 velocity field values that have
to be stored. In order to avoid this, we turn to the so-called quasi-
Lagrangian method [15] which eliminates the large scale sweeping
motion superimposed on the localized singular events we want
to study. Specifically, we follow 100 Cartesian cubes V L simulta-
neously through different regions of the evolving Navier–Stokes
flow. The motion of the subvolumes V L is fixed by the advec-
tion of a Lagrangian tracer in their center, and their sides are kept
aligned with the outer coordinates. The boxes have a side length of
L = 17ηK , corresponding to 513 grid points. This reduces the num-
ber of velocity field values that have to be stored to 1.4 × 10−3 of
the original estimate.

2. Analytic predictions on the growth rate of enstrophy

The vorticity is the curl of the velocity field, ω = ∇× u, and the
enstrophy is the volume integral of its intensity,

E(t) =
∫

V

ω2 dV . (3)

It follows from the Navier–Stokes equation that in any incom-
pressible Newtonian fluid the growth rate of the enstrophy, dE/dt ,
obeys,

dE(t)
dt

= 2
∫

V

(ω · ∇u) · ω dV − 2ν

∫

V

(∇ω)2 dV . (4)

From this it can be shown that E(t) cannot grow faster than

dE(t)
dt

! 27c3

16ν3 E(t)3, (5)

with ν the kinematic viscosity of the fluid and c = √
2/π (for de-

tails see [16,17]). This holds for the volume integrated quantity
and does not make any assumptions on the flow. Incompress-
ible flow fields that maximize the enstrophy production, and thus
the growth rate of enstrophy, were recently found by solving an
optimization problem [16,17]. At high Reynolds number the max-
imum enstrophy growth rate (5) is realized by colliding, axially
symmetric vortex rings. At lower Reynolds numbers, maximum en-
strophy generation is realized by interacting Burgers vortices with
dE/dt ∼ E7/4.

There is a second analytical result that pertains to the growth
rate of the ensemble averaged squared vorticity (or enstrophy den-
sity)

ρE =
〈
ω2〉 (6)

for the particular case of homogeneous and isotropic (box) tur-
bulence. A direct consequence of the von Kármán–Howarth (KH)
equation [18] for the velocity correlations, when the volume aver-
age ⟨·⟩ in (7) agrees with the ensemble average that appears in the
KH equation, is derived in [19,20] and states that

d
dt

ρE = − 7S

3
√

15
ρ3/2

E − 70ν
〈(
∂2

x ux
)2〉

, (7)

where S is the skewness of the longitudinal velocity derivative,
and ux is the x-component of the turbulent velocity field. It is an
empirical fact that S < 0. It has been observed that the skewness S
is basically constant for Taylor microscale Reynolds numbers Rλ "
200 and it grows weakly as |S| ∼ R0.11

λ for Rλ > 200 [21,22]. Thus
we will assume for purposes of discussion and data analysis that
dρE/dt ∼ ρ3/2

E holds approximately. This exponent is much smaller
than the one in the upper bound (5).

In order to make the relation between the two relations more
explicit, we rewrite the first one assuming that E = L3ρE = L3⟨ω2⟩

Fig. 1. (Color online.) Vortex tubes and dissipation sheets in homogeneous isotropic
turbulence. Isosurfaces of the vorticity magnitude square (or local enstrophy) Ω =
ω2 (cyan) and the energy dissipation rate ϵ = 2νSij Si j (red) with Sij = (∂ui/∂x j +
∂u j/∂xi)/2 the rate of strain tensor. Both surfaces are shown at the level of ten
times their mean. The displayed volume is 1/16 of the full simulation box.

for a box of length L and ⟨ϵ⟩ = νρE to bring in the Kolmogorov
length. Then the bound suggests that

d
dt

ρE ! 27c3

16

(
L

ηK

)6

ρ3/2
E . (8)

The key difference then is a ratio of lengths: if the sidelength L
of the volume V is of the order of the Kolmogorov scale, both
results imply the same exponent, despite the different boundary
conditions and derivations. But if the volume is larger than ηK ,
a stronger variation is possible: in a situation where the vorticity
content of the volume is below the mean that enters the defini-
tion of the Kolmogorov length, the local dissipation length is larger
than the statistical average, and a built up of enstrophy will reduce
the local value, thereby increasing the contribution from the factor
(L/ηK ).

3. Results

3.1. Local quasi-Lagrangian analysis

Configurations as highly symmetric as the colliding vortex rings
that realize the maximum instantaneous enstrophy generation can-
not be generically expected in a turbulent flow. In particular,
the high-amplitude vorticity events in turbulence arise preferen-
tially in the form of tubes [1,2,23] which are rapidly stretched
and deformed by background and self-induced straining motions
[24,25]. Strong strain (or shear) results in high-amplitude energy
dissipation rates. The spatial distribution of high-amplitude events
of the local enstrophy and energy dissipation rate, illustrated in
Fig. 1, underlines this behavior. Isosurfaces of the local enstrophy,
Ω(x, t) = ω2(x, t) (Fig. 1, cyan) at ten times the mean value show
primarily elongated structures. The isosurfaces of energy dissipa-
tion rate, ϵ(x, t) = (ν/2)(∂ui/∂x j + ∂u j/∂xi)

2 (Fig. 1, red) also at
ten times the mean value, reveal sheet-like structures between
the high-vorticity events. This illustrates that while the ensem-
ble averaged values of energy dissipation and vorticity are related
by ⟨ϵ⟩ = νρE this does not apply to their instantaneous and local
values. It does show, however, that extreme events occur at neigh-
boring locations.

To capture this quantitively, we study the probability density
functions (pdf’s) of local energy dissipation and vorticity in Fig. 2.
The pdf’s of ϵ(x, t) and Ω(x, t) show stretched exponential tails
indicative of strong small-scale intermittency (see Fig. 2(a)). The
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would add up to about 5 × 1013 velocity field values that have
to be stored. In order to avoid this, we turn to the so-called quasi-
Lagrangian method [15] which eliminates the large scale sweeping
motion superimposed on the localized singular events we want
to study. Specifically, we follow 100 Cartesian cubes V L simulta-
neously through different regions of the evolving Navier–Stokes
flow. The motion of the subvolumes V L is fixed by the advec-
tion of a Lagrangian tracer in their center, and their sides are kept
aligned with the outer coordinates. The boxes have a side length of
L = 17ηK , corresponding to 513 grid points. This reduces the num-
ber of velocity field values that have to be stored to 1.4 × 10−3 of
the original estimate.

2. Analytic predictions on the growth rate of enstrophy

The vorticity is the curl of the velocity field, ω = ∇× u, and the
enstrophy is the volume integral of its intensity,

E(t) =
∫

V

ω2 dV . (3)

It follows from the Navier–Stokes equation that in any incom-
pressible Newtonian fluid the growth rate of the enstrophy, dE/dt ,
obeys,

dE(t)
dt

= 2
∫

V

(ω · ∇u) · ω dV − 2ν

∫

V

(∇ω)2 dV . (4)

From this it can be shown that E(t) cannot grow faster than

dE(t)
dt

! 27c3

16ν3 E(t)3, (5)

with ν the kinematic viscosity of the fluid and c = √
2/π (for de-

tails see [16,17]). This holds for the volume integrated quantity
and does not make any assumptions on the flow. Incompress-
ible flow fields that maximize the enstrophy production, and thus
the growth rate of enstrophy, were recently found by solving an
optimization problem [16,17]. At high Reynolds number the max-
imum enstrophy growth rate (5) is realized by colliding, axially
symmetric vortex rings. At lower Reynolds numbers, maximum en-
strophy generation is realized by interacting Burgers vortices with
dE/dt ∼ E7/4.

There is a second analytical result that pertains to the growth
rate of the ensemble averaged squared vorticity (or enstrophy den-
sity)

ρE =
〈
ω2〉 (6)

for the particular case of homogeneous and isotropic (box) tur-
bulence. A direct consequence of the von Kármán–Howarth (KH)
equation [18] for the velocity correlations, when the volume aver-
age ⟨·⟩ in (7) agrees with the ensemble average that appears in the
KH equation, is derived in [19,20] and states that

d
dt

ρE = − 7S

3
√

15
ρ3/2

E − 70ν
〈(
∂2

x ux
)2〉

, (7)

where S is the skewness of the longitudinal velocity derivative,
and ux is the x-component of the turbulent velocity field. It is an
empirical fact that S < 0. It has been observed that the skewness S
is basically constant for Taylor microscale Reynolds numbers Rλ "
200 and it grows weakly as |S| ∼ R0.11

λ for Rλ > 200 [21,22]. Thus
we will assume for purposes of discussion and data analysis that
dρE/dt ∼ ρ3/2

E holds approximately. This exponent is much smaller
than the one in the upper bound (5).

In order to make the relation between the two relations more
explicit, we rewrite the first one assuming that E = L3ρE = L3⟨ω2⟩

Fig. 1. (Color online.) Vortex tubes and dissipation sheets in homogeneous isotropic
turbulence. Isosurfaces of the vorticity magnitude square (or local enstrophy) Ω =
ω2 (cyan) and the energy dissipation rate ϵ = 2νSij Si j (red) with Sij = (∂ui/∂x j +
∂u j/∂xi)/2 the rate of strain tensor. Both surfaces are shown at the level of ten
times their mean. The displayed volume is 1/16 of the full simulation box.

for a box of length L and ⟨ϵ⟩ = νρE to bring in the Kolmogorov
length. Then the bound suggests that

d
dt

ρE ! 27c3

16

(
L

ηK

)6

ρ3/2
E . (8)

The key difference then is a ratio of lengths: if the sidelength L
of the volume V is of the order of the Kolmogorov scale, both
results imply the same exponent, despite the different boundary
conditions and derivations. But if the volume is larger than ηK ,
a stronger variation is possible: in a situation where the vorticity
content of the volume is below the mean that enters the defini-
tion of the Kolmogorov length, the local dissipation length is larger
than the statistical average, and a built up of enstrophy will reduce
the local value, thereby increasing the contribution from the factor
(L/ηK ).

3. Results

3.1. Local quasi-Lagrangian analysis

Configurations as highly symmetric as the colliding vortex rings
that realize the maximum instantaneous enstrophy generation can-
not be generically expected in a turbulent flow. In particular,
the high-amplitude vorticity events in turbulence arise preferen-
tially in the form of tubes [1,2,23] which are rapidly stretched
and deformed by background and self-induced straining motions
[24,25]. Strong strain (or shear) results in high-amplitude energy
dissipation rates. The spatial distribution of high-amplitude events
of the local enstrophy and energy dissipation rate, illustrated in
Fig. 1, underlines this behavior. Isosurfaces of the local enstrophy,
Ω(x, t) = ω2(x, t) (Fig. 1, cyan) at ten times the mean value show
primarily elongated structures. The isosurfaces of energy dissipa-
tion rate, ϵ(x, t) = (ν/2)(∂ui/∂x j + ∂u j/∂xi)

2 (Fig. 1, red) also at
ten times the mean value, reveal sheet-like structures between
the high-vorticity events. This illustrates that while the ensem-
ble averaged values of energy dissipation and vorticity are related
by ⟨ϵ⟩ = νρE this does not apply to their instantaneous and local
values. It does show, however, that extreme events occur at neigh-
boring locations.

To capture this quantitively, we study the probability density
functions (pdf’s) of local energy dissipation and vorticity in Fig. 2.
The pdf’s of ϵ(x, t) and Ω(x, t) show stretched exponential tails
indicative of strong small-scale intermittency (see Fig. 2(a)). The
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Fig. 2. (Color online.) Statistics of local enstrophy and energy dissipation rate.
(a) Probability density functions of local enstrophy, Ω , and energy dissipation rate,
ϵ , given in units of their means, respectively. The vertical arrows mark the global
maxima of Ω and ϵ , respectively, in case of three Lagrangian tracers, No. 14, 33
and 45. (b) Joint probability density function of local enstrophy and energy dis-
sipation rate. The distribution is normalized by both single quantity distributions,
p(z1, z2)/[p(z1)p(z2)], in order to highlight the statistical correlations between
z1 = ϵ/⟨ϵ⟩ and z2 = Ω/ρE . Color coding is in decadic logarithm.

tail is more extended for Ω than for ϵ , in agreement with the ob-
servations in [26]. Fat tails imply that large amplitude events are
significantly more probable than for a Gaussian distributed signal
with the same second moment. In Fig. 2(a) we also mark the global
maxima in ϵ and Ω identified within the advected volumes V L for
three particular Lagrangian trajectories. The locations far out in the
tails document that our quasi-Lagrangian tracking is able to detect
high-amplitude events and that extreme events in both quantities
are spatially correlated and located within our advected volume.
The local correlation between high-amplitude local enstrophy and
energy dissipation events is further supported by the joint pdf in
Fig. 2(b), where p(ϵ/⟨ϵ⟩,Ω/ρE )/[p(ϵ/⟨ϵ⟩)p(Ω/ρE )] is shown. The
maximum values appear in the upper right of the support where
the largest amplitudes for both are present. High-amplitude fluc-
tuations in energy dissipation and local enstrophy density are thus
strongly statistically correlated and found very close together, in
both, space and time.

We now turn to the study of the time evolution of extreme
events within our subvolumes. Fig. 3(a) shows time traces of the
local enstrophy

EL(t) =
∫

V L

ω2 dV . (9)

Since we are interested in the relation between large values of
dEL/dt with EL , we show in Fig. 3b the same data as a scatter
plot in the plane spanned by EL and dEL/dt on a double loga-
rithmic scale. The collection of the individual growth histories in
the subvolumes (which can vary strongly from one to another) is
bounded from above by the scaling dE L/dt ! E3/2

L , indicated there
by the dashed line. This shows that the local growth rate and en-
strophy are related very much as are the volume averages, Eq. (4),
so that the effects of sweeping are averaged out. It suggest that
the estimate

Fig. 3. (Color online.) Quasi-Lagrangian analysis of enstrophy. (a) Time series of EL(t)
for all 100 subvolumes V L are plotted. The time traces that reach the largest local
maxima for EL are colored differently and their labels are indicated in the leg-
end. Enstrophy is given in units of ν2/L with L = 16ηK . (b) Enstrophy growth
rate versus enstrophy. The enstrophy growth rate, dEL/dt , is given in units of
ν3/L3. The a priori upper bound dEL/dt = 27

√
2/(8ν3

√
π3)E3

L is indicated as a
red line. The growth that follows from the von Kármán–Howarth equation [18],
dEL/dt ≈ −7S/3

√
15E3/2

L with a derivative skewness of S = −0.5, is indicated as a
solid blue line. The dashed blue line has the same slope and serves as a guide to
the eye. Color coding is as in panel (a).

dEL

dt
∼

∫

V L

(ω · ∇u) · ω dV ∼
〈
ω2〉3/2

V L ∼
√

E3
L/V L (10)

also holds locally. We have also verified this scaling in a volume
V L/8, i.e. in a cube with half the sidelength. The striking observa-
tion is that the envelope of the local enstrophy growth follows the
scaling of (7). However, we wish to stress that (generically) there
are nonvanishing enstrophy fluxes,

∫
∂V L

ω2u · dA ≠ 0, across the
bounds of V L . Therefore (10) is only a heuristic estimate.

3.2. Local analysis of extreme events

The previous analysis shows that when the average volume has
a diameter of about the Kolmogorov length or above, the bulk es-
timate for the enstrophy growth is recovered. Stronger growths,
therefore, may only occur on smaller scales. To probe for this, we
turn to the study of the time evolution of local extrema within the
cell. We select the grid point x∗ with the fastest local growth rate
within the subvolume, dΩ/dt|max = maxx∈V L (t)[dΩ/dt]. As an in-
dication of the numerical uncertainty, we also show the 26 growth
rates for points on a 33 cube surrounding x∗ . Figs. 4(a) and (b)
demonstrate that the maximum position always gives the outer
envelope of the curve. The curve is continuous by construction,
but its slope is discontinuous when the position x∗ of the point
of maximal growth rate jumps discontinuously within the cell.
Panel (a) shows also that long periods of low variability and small
growth rates are interrupted by short violent outbursts of the local
enstrophy growth rate. The two subsequent intervals I and II for
tracer No. 45 mark exactly such a rapid growth event.

Fig. 4(b) shows the same data as (a) in the plane spanned by
the local enstrophy and its growth rate, dΩ/dt and Ω . The first
part follows a scaling that resembles the global enstrophy growth
bound, dΩ/dt ∼ Ω3. It is connected with a rapid stretching by two







  AND THAT’S THAT … 
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