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Navier-Stokes equations:
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Periodic box: XxE[0,L]
Initial condition:  u(x,0) = u,(x)

(WLOG [ iy (¥)dx = 0)

Open ($1M) question:
Does a unique smooth solution exist for all ¢ > 0?



Some definitions & some things we know:

*  Kinetic energy:
K(n) =4 [la(x.of d’x = 4.0
*  Vorticity:
O=Vxi = oO+i'Vd=vAd+&d- Vi
*  Enstrophy:

T = 2
E(1) =|@(E,0); = |VaGE.o)| =2 K ()
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 If solution 1s smooth enough, dK aq; = —VE.



Global (in time) weak solutions exist:

If K,<wo, there are weak solutions with finite energy,

K(t)=sK, Vt=0
... and with finite integrated enstrophy,

[E@®dt < © VOs<t,=1,

... but only known to satisfy an energy inequality,

K(t,)sK(t,)-v [ E()dt torae.t, >0

a

... and there 1s no assurance that they are unique.



Local (in time) strong solutions exist:

For (8m?/L?)K, < E, < o,

A7(K,.E)v)>0 3 E(f)<o for O<t<T.

Fact:

E(f)<w for t, <t=<t,

I

u(-,t) € C*([0,L)) fort, <t=t,.

And strong solutions are unique.



As long as the enstrophy is finite ...
or for Galerkin-regularized solutions
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Enstrophy generation rate G{u} = production — dissipation



Vortex stretching & enstrophy production:
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Fig. 1.4. The vortex stretching mechanism. When «-Vu has a component parallel
to @, as in (a), the fluid element is stretched in the direction of the vorticity. The
resulting decrease in the element’s moment of inertia, illustrated in (b), leads to
an increase in the amplitude of the vorticity.

Vorticity can be amplified; enstrophy can be produced.

Does this nonlinear process get out of control?



System of differential (in)equations:

...as long as RHS = 0.
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Enstrophy decreases if E,K,<v*2c.






K 2
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Global existence and uniqueness if E,K,<3v*/2c.
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But does not prevent finite-time singularity if E,K,>3v4/2c.
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But does not prevent finite-time singularity if E,K,>3v*/2c.



Question:
How big can G{u} really get in terms of K and E?
* Analytic estimates don 't account for divu =0 ...
* or total competition between production & dissipation.

* Would like to solve the variational problem for max rate:

~ 112 — _||2
M(K ,E) = uf){G{u} | al; = Kand |Viil| - E}

V-u



Settle for slightly less:

R(E) = su {G{Zz} | HW\E - E}

V-i=0

SO ak <R(E)
dt
We know that R < cE3/4v2 ... but that # $1M.
“Critical " behavioris R ~ E?2 as £ — «.

Solve the Euler-Lagrange equations:

0

i

0 {G{ZZ}+ [pV-idx+af Wﬁ\zcﬁx}

Solve computationally ... via gradient ascent method.



Starting from exact solution as £ — 0 ...

Max Enstrophy Growth Rate vs Enstrophy
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Rate
\
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Large E behavior is H ~ EL78 E7/4)

... subcritial!



What do the maximizers look like?

periodic array of “vortex stretchers”



But this is a non-convex variational problem

- Kuler-Lagrange solutions are local extrema ...
* So must see if there are other, global, maxima.



... another branch emerges at high E:

Max Enstrophy Growth Rate vs Enstrophy

Max Enstrophy Growth Rate

10’ 10°
Enstrophy

+ Large E behavior is R ~ E2997E3) | as estimated.



What do these maximizers look like?

colliding vortex rings



Another view ...

vorticity Magnifude ~~ -
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Vorticity in a plane slice



Reality check:

<

For velocity fields with cylindrical symmetry ...

G{u} = —2VH§(I)HE + Zfa)g% d’x



Reality check (continued):

— 2
Gli} =—v|Va| +2fw0; % dx
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Then maximize over a ...

.. max occurs at a ~ V4/E
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Remarks & laments:

Remark #1: The analytic asymptotic high-FE estimate
R(E) < cE3/Vv? can be saturated by divergence-free fields.

Lament #1: no $1M to be found down this road!

Remark #2: This “most dangerous’ velocity field will not

produce a singularity in N-S.

Lament #2: no $1M to be found down that road!

Remark #3: K ~ 1/E for the optimizer, so we’ re not sure if
knowing the full upper limit M(K,E) will help ...

Lament #3: so $1M not down that road, either!



Maybe Lu will find $1M in Manhattan ...




Just for fun ... what do colliding vortex rings do?

(from website of Dr. T.B. Nickels <http://www2.eng.cam.ac.uk/~tbn22/Mov.html>)
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Fig. 1. (Color online.) Vortex tubes and dissipation sheets in homogeneous isotropic
turbulence. Isosurfaces of the vorticity magnitude square (or local enstrophy) £2 =
®? (cyan) and the energy dissipation rate € = 2vS;Sij (red) with S;; = (u;/0x; +
duj/0x;)/2 the rate of strain tensor. Both surfaces are shown at the level of ten
times their mean. The displayed volume is 1/16 of the full simulation box.
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Fig. 2. (Color online.) Statistics of local enstrophy and energy dissipation rate.
(a) Probability density functions of local enstrophy, £2, and energy dissipation rate,
€, given in units of their means, respectively. The vertical arrows mark the global
maxima of 2 and ¢, respectively, in case of three Lagrangian tracers, No. 14, 33
and 45. (b) Joint probability density function of local enstrophy and energy dis-
sipation rate. The distribution is normalized by both single quantity distributions,
p(z1,22)/[p(z1)p(z2)], in order to highlight the statistical correlations between
z1 =€/{€) and zp = §2/pg. Color coding is in decadic logarithm.



dE(t)  27¢3
<
dt 16v3

E(t), (5)

There is a second analytical result that pertains to the growth
rate of the ensemble averaged squared vorticity (or enstrophy den-

Sity)

pE = (?) (6)

for the particular case of homogeneous and isotropic (box) tur-
bulence. A direct consequence of the von Karman-Howarth (KH)
equation [18] for the velocity correlations, when the volume aver-
age (-) in (7) agrees with the ensemble average that appears in the
KH equation, is derived in [19,20] and states that

d _ 75 3/2
dt/OE = 3 ,—15/015

where S is the skewness of the longitudinal velocity derivative,
and uy is the x-component of the turbulent velocity field. It is an
empirical fact that S < 0. It has been observed that the skewness S
is basically constant for Taylor microscale Reynolds numbers R; <
200 and it grows weakly as |S| ~ R%!! for R; > 200 [21,22]. Thus
we will assume for purposes of discussion and data analysis that

dpog/dt ~ pg/ ? holds approximately. This exponent is much smaller
than the one in the upper bound (5).

— 700((82uy)°). (7)
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Fig. 3. (Color online.) Quasi-Lagrangian analysis of enstrophy. (a) Time series of Ej (t)
for all 100 subvolumes V| are plotted. The time traces that reach the largest local
maxima for E; are colored differently and their labels are indicated in the leg-
end. Enstrophy is given in units of vZ/L with L = 16ng. (b) Enstrophy growth
rate versus enstrophy. The enstrophy growth rate, dE;/dt, is given in units of
v3/L3. The a priori upper bound dE;/dt = 27\/5/(81)3\/F)E% is indicated as a
red line. The growth that follows from the von Karman-Howarth equation [18],
dE; /dt ~ —75/3+/15E,’* with a derivative skewness of S = —0.5, is indicated as a
solid blue line. The dashed blue line has the same slope and serves as a guide to
the eye. Color coding is as in panel (a).
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Fig. 4. (Color online.) Local analysis of very rapid enstrophy growth events. (a) Time evolution of the maximum of d2/dt in V; for tracer No. 45. Growth rates at the grid
point of the maximum (blue for I and black for II) and the 27 neighboring points (cyan for I and red for II) are shown. The curve is piecewise continuous since one local
maximum in V| takes over a former at a different grid point. (b) Replot of the data from (a) in the d£2/dt-2 plane. The arrows in panel (b) indicate the time evolution.



Fig. 5. (Color online.) Structures in an extreme enstrophy growth event. Upper six panels: Isosurfaces of §2 (red: 20 (£2), gray: 10 (£2)). Lower six panels: Isosurfaces plots
of € (yellow: 2 {€), cyan: 20 (€}). Panels (A) for t/z, = 37.44, (B) for t/7, = 37.8, (C) for t/7, = 38.16 correspond with time interval I in Fig. 4; (D) for t/t, = 38.52, (E) for
t/ty = 38.88 and (F) for t/7; = 39.24 with time interval IL



AND THAT’S THAT ...




THANKS FOR YOUR ATTENTION!
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"You want proof? I'll give you proof!"”



